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ABSTRACT 
 
This research presents a new method to improve analytical 
model fidelity for non-linear systems.  The approach 
investigates several mechanisms to assist the analyst in 
updating an analytical model based on experimental data 
and statistical analysis of parameter effects.  The first is a 
new approach at data reduction called feature extraction.  
This is an expansion of the ’classic’ update metrics to 
include specific phenomena or characters of the response 
that are critical to model application.  This is an extension of 
the familiar linear updating paradigm of utilizing the eigen-
parameters or frequency response functions (FRFs) to 
include such devices as peak acceleration, time of arrival or 
standard deviation of model error.  The next expansion of 
the updating process is the inclusion of statistical based 
parameter analysis to quantify the effects of uncertain or 
significant effect parameters in the construction of a meta-
model.  This provides indicators of the statistical variation 
associated with parameters as well as confidence intervals 
on the coefficients of the resulting meta-model.  Also 
included in this method is the investigation of linear 
parameter effect screening using a partial factorial variable 
array for simulation.  This is intended to aid the analyst in 
eliminating from the investigation the parameters that do not 
have a significant variation effect on the feature metric.  
Finally an investigation of the model to replicate the 
measured response variation is examined. 

1. MOTIVATION 

The updating and validation of complex non-linear models to 
reflect not only ‘real world’ data but also its variability is of 
strong interest in the aerospace, automotive and aviation 
industries ([1], [2], [3]).  The higher objective is to improve 
confidence in the model within and beyond the experimental 
range, since it is often impractical to test over the full 
operational range of a system.  An additional objective is to 
develop an understanding and identification of the relation 
between significant input parameters, such as Young’s 
Modulus, and critical response data components (features).  
Construction of a ‘meta-model’ between the input and output 
is developed to aide in this understanding and to reduce the 
computational load of investigating parameter variation.   
 

2. METHODOLOGY 

A procedure is developed to determine dominant input 
variables, construct and evaluate the meta-model, including 
mechanisms to judiciously select input variable levels, and 
investigate the relation between analytical predictions and 
experimental results for not only error but also statistical 
distribution properties. 
 
Current model updating methods in structural dynamics are 
generally based on linear assumptions and do not have a 
quantifiable confidence index of model components.  Several 
methods use either the measured eigen-parameters or 
FRFs.  These techniques commonly attempt to either map 
the experimental information to the model space or the 
converse.  This results in the confounding of system 
information through data expansion or condensation.  
Identified modeling errors are associated with specific 
parameters or physical regions of a model, often without a 
critical analytic justification.  There is normally little 
evaluation, from either a Design of Experiments (DoE) [4] or 
statistical approach to quantify the model update mechanism 
for its range of applications and confidence intervals. 
 
Development of a new method based on use of response 
‘features’ and a DoE approach parameter variation analysis 
in the updating of analytical models is examined.  This 
method is applicable to time-varying non-linear systems 
where classical methods often do not succeed.  This method 
also provides for confidence indications of model 
components.   
 
A ‘feature’ is an identified physically and/or analytically 
significant quantity derived from the response data.  This 
could be as simple as the peak level of a single response 
record or a more coupled metric such as the standard 
deviation of model error over the entire response space.  
The former is one of the metric evaluated in this paper and 
the latter is currently under investigation for a different 
model.  A ‘feature’, by its nature, is a general term and is 
specified by the analyst.  Under this guideline the traditional 
update choices of eigen-parameters would qualify as 
features, though their application is only meaningful for linear 
systems.  Selection of features that are amenable to the 



initial linear screening and have justifiable physical meaning 
is often one of the greater challenges with this method. 

3. APPLICATION 

A flowchart of the proposed method is shown in Figure 1.  
The development presented will follow this guide.  The 
method is iterative in nature and the selection of features is 
dependent on the analyst’s goals and insights.  In some 
instances, iterations will be performed within steps and in 
most cases at least some redefinition/refinement of 
parameters and their levels, or input settings, is necessary.  
 
This technique has been applied to systems of varying 
complexity at Los Alamos National Laboratory (LANL)[6].  
The example illustrated in this presentation will be the drop-
test model and experiments for characterizing visco-elastic 
material behavior.   
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Figure 1. Model Updating Method Overview 

The following sections step though this process. 

4. IMPLEMENTATION 

The first step is to conduct initial experimentation for the 
identification of response features and selection of 
preliminary input variables.  An input variable is chosen for 
several possible reasons, first if it is known to vary in 
operation and experimentation and expected to have a 
significant impact on the response feature, it is included.  
Second if it is not readily measurable, but expected to have 

impact, it may be considered.  The experimentalist and the 
analyst determine other candidates.   
 
Figure 2 shows the measured input and output for one set of 
the experimental tests and illustrates the variability in 
‘identical’ experiments.  It is important to recognize that the 
variability in the experimentation must be taken into 
consideration not only in determining the proper adjustments 
to the model, but also as a limiting criteria for the update 
procedure itself.  It should be recognized that it is impractical 
to refine a model such that it has lower variability than a test 
of the same design point.   
 
Also illustrated in the figure below is the concept of a 
response feature.  In this case the peak level of acceleration 
and its time of arrival are the selected response features.  
These were selected with input from material scientists as 
critical for material characterization. 
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Figure 2. Experimental Variation, Input and Output 2 

 
In this experiment, there are eight (8) input variables, 
resulting in an eight-dimensional sample space.  It is 
impractical to construct a full factorial experiment for this 
high of dimensionality.  Therefore we use the sampling 
method of orthogonal arrays.  This mechanism allows for 
linear effects to not be confounded (aliased) with each other 
and provides and overall efficient sampling of the design 
space.  In Figure 3, the variability of the Abaqus [5] Finite 
Element Analysis (FEA) model is shown for the 81-run 
Orthogonal Array ensemble.  It is clear that the original 
model spans the range of experimental response, which is a 
crucial indicator of it usefulness.  If the model and the 
chosen input variable ranges do not span the experimental 
set that will be used in updating, serious questions exist 
about the appropriateness of the model and the selected 
input levels.  Re-examining the input ranges, and expanding 
as appropriate, with the restriction that the ranges not extend 
into non-realizable values, can often remedy this situation.   



 
Figure 3.  Model Results for the OA81 Run Ensemble 

 
One of the benefits of constructing a meta-model of the 
system and the initial linear screening is identification of the 
statistically significant input parameters.  Often the initial set 
of input variables is inclusive, which prevent the analysis of 
multiple designs when the simulation code is resource 
expensive.  Through the DoE design of the input array [7], 
[8] and subsequent analysis of variation (ANOVA) of the 
interrelation between input levels and output features the 
parameter set is reduced.  This reduced set is then used to 
create a meta-model or response surface of the system.  
Often additional computer simulations of the model are 
performed to provide adequate input levels for higher order 
polynomial models in the ANOVA.   
 

Table 1. Dominant Parameters 

 OA27 OA27r OA81 OA81r FF256 FF256r 
Peak 
G  
Loc 
1 

C,H A, C, 
B, F 

C, A, 
F, B, 
H 

C, A, 
B, F 

A, C, 
H, B, 
E, G 

C, A, B, 
F, G 

TOA 
1 

C, A, 
B, F, 
G, H 

C, F, 
A, E 

C, A, 
G, F 

C, E, 
A, F 

C, F, 
A, G, 
E, B 

C, A, F, 
E, B 

Peak 
G  
Loc 
2 

C, H C, F, 
B, G 

C, F, 
H, 

C, F, 
A, G E, 
H 

C, H, 
F, E, 
G, B 

C, F, B, 
G, E 

TOA 
2 

C, F, 
G, A, 
B 

C, E, 
F, G, 
B, A  

C, G, 
F, E, 
A 

C, E, 
F, G, 
B, A 

C, F, 
G, E 

C, E, F, 
G, A, B 

Peak 
G, 
Loc 
3 

H C, A, B 
C, A, 
B, F, 
H 

C, A, 
B, F, H 

C, B, 
A, H, E 

C, A, B, 
F, G 

TOA 
3 

C, B, 
F 

C, B, 
F, E 

C, B, 
F, H 

C, B, 
F, E 

C, B, 
F, G, H 

C, B, F, 
E 

 
Table 1 shows the results of the three initial simulation run-
sets.  The letters A-H represent chosen input variables and 
their order represents there corresponding significant linear 

participation.  For example in run-set OA81, the analysis 
shows that parameters C, A, F, B and H have an significant 
impact in decreasing magnitude. 
 
If scores are then assigned to each parameter and its order 
in a model, an evaluation of contributing input variables can 
be made.  In this case, 4 points were assigned for 1 st place, 
3 for 2nd and so on.  The results are presented in Table 2.  
Clearly D has no effect, H was shown to be a false positive 
and G is significantly lower than the remaining variables, so 
A, B C, E and F were retained for further analysis and model 
construction. 

Table 2. Parameter Contribution Scores, Sorted by 
Dataset 

 OA27 OA27r OA81 OA81r FF256 FF2
56r 

Total 

A 4 9 9 10 8 9 49 
B 5 9 6 7 7 9 43 
C 20 23 24 24 23 24 138 
D 0 0 0 0 0 0 0 
E 0 5 1 7 2 5 20 
F 6 11 11 10 10 11 59 
G 2 2 5 2 4 2 17 
H 10 0 3 0 5 0 18 
 
A meta-model was formed for each output feature for several 
simulation runs.  To keep the number of simulations at a 
tractable number two approaches were used, either the 
simulation had five (5) variables and three (3) levels, (243 
runs), or four (4) variables and four (4) levels, (256 runs).  
 
Figure 4 shows the results of the simulation runs.  Both 
models span the experimental range and perform generally 
well.  It is clear though from this figure and Figure 5 that the 
four variable model has less error.   
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Figure 4. Model Comparison for Peak Acceleration 
Prediction 

In this case the model had A, B, C and F retained.  While 
information theory states that we should see an error reduction with 
smaller model dimension for essentially the same number of 



data points (runs in this case) it was shown in other research 
not presented here that these four variables are the best 
sub-set.  
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Figure 5. Error in Model Prediction of Peak G, Loc. 2 

5. APPLICATION OF META-MODELS 

The next step is to infer from test data the optimal values of 
the input parameters.  The procedure followed when the 
investigation is restricted to four parameters: (the two angles 
of impact (A, B), the bolt pre-load (C) and the input scaling 
(F)) will now be introduced.  
 
Since a smaller number of input parameters are retained (4 
out of 8), a localized computer experiment can be designed 
to provide a better resolution in the area of interest. The area 
of interest is here defined as the region in the multi -
dimensional feature space where responses measured 
during testing are located. As mentioned previously, a full 
factorial matrix designed from a Taguchi array formed of four 
levels for each input parameter is analyzed. Then, fast 
running models are fit to the data. Equation (1) illustrates 
one of the models typically obtained for the peak 
acceleration response at sensor #2: 
 

peak
2

2
1 2 bolt I 1

2
2 1 2 2 bolt 2 I bolt I

x { 1,538.2 43.6 288.4 2.4 2,552.8 391.3
307.1 665.7 0.5 452.4 1.5}*

{1 ? ? P a ?

? ? * ? ? * P ? *a P *a }T

= − −
− − −

&& L

L

 

Equation 1 

 
Instead of applying direct least-squares fitting to multi -
dimensional polynomials, statistical based models are 
preferred because in addition to yielding computationally 
efficient meta-models, they also provide confidence intervals 
that can be used for assessing the model’s goodness-of-fit. 
For example, each coefficient of the polynomial shown in 
Equation (1) is associated to statistics that show how 
dominant the corresponding effect is. Therefore, Equation 

(1) defines a family of models that can be re-sampled to 
account for omitted sources of uncertainty (round-off errors, 
environmental variability, etc.). Re-sampling the model 
essentially means that decisions would be based on 
properties of ensembles rather than a single model [9]. In 
addition, statistical models can be refined to optimize the 
statistical significance of each individual effect contribution, 
which may be more important than maximizing the overall 
goodness-of-fit to the data. 

6. OBJECTIVE FUNCTION BASED OPTIMIZATION 

To quantify the application of the model to explain the 
experimental response variation, an optimization was 
performed to adjust the analytical model to ‘best-match’ the 
physical test results.  The objective function chosen was the 
distance squared between the experimental measured 
feature and the analytical prediction based on the meta-
model using variables A, B, C, and F.  Explicitly the general 
form of objective function was, 
 

( )2
( , , , ) ( , , , )A B C F A B C FJ ExpFeature AnalFeature∆ ∆ ∆ ∆ = − ∆ ∆ ∆ ∆  

Equation 2 

 

Objective Function

( )2
( , , , ) 1332 2( , , , )A B C F A B C FJ PeakLoc∆ ∆ ∆ ∆ = − ∆ ∆ ∆ ∆

 

Figure 6. Surface of Objective Function for Optimization 

 
Figure 6 illustrates, in normalized coordinates, a 2D 
response surface obtained from Equation (2). The mean 
acceleration response obtained from the data collected at 
sensor #2 is shown as a star. A straightforward optimization 
provides the optimal values of the input parameters. In this 
case, a pre-load equal to 200 psi (1.38 x 106 N/m2) is 
obtained together with an impact angle equal to 0.7 degrees. 
Note that such an approach provides an optimized model 
capable of reproducing the mean response obtained from 
test data. It does not guarantee that the variance or other 
higher statistical moments are captured.  
 



7. METHOD EVALUATION 

Analytical Versus Experimental for Updated Models of Drop Test,
TOA1 Update, Peak 1
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Figure 7.  Comparison Between Analytical and 
Experimental Response Variation 

 
Figure 7 confirms that the proposed procedure works well for 
this application.  The experimental and corresponding ‘meta-
model optimized’ analytical response has approximately the 
same variation and character.  This validates the final 
analytical model and the update procedure well. 

8. CONCLUSIONS 

This research presents a new method to improve analytical 
model fidelity for non-linear systems.  The approach 
investigates several mechanisms to assist the analyst in 
updating an analytical model based on experimental data 
and statistical analysis of parameter effects.  The first is a 
new approach at data reduction called feature extraction. 
The next expansion is the inclusion of statistical based 
parameter analysis to quantify the effects of uncertain or 
significant effect parameters in the construction of a meta-
model.  The results from the linear screening, model 
refinement, variable variation and the response synthesis all 
are very promising.  This should greatly aid the analyst in the 
update of large scale and non-linear models over the present 
methods.  
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